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Abstract. A relatively simple cluster approximation for the investigation of the phase tran- 
sition thermodynamics in order-disorder systems is proposed. The approximation is demon- 
strated on the square and simple-cubic king lattices with nearest-neighbour ferromagnetic 
coupling. The accuracy of the approximation is shown to be no worse than that of the well 
known cluster-variation method (CVM). At the same time the modified cluster-field method 
has fewer variational parameters and is easier to use than the CVM, allowing use of larger 
clusters for better accuracy. 

1. Introduction 

Phase transitions related to ordering of ions, atomic groups or spins in the double-well 
potential are successfully described on the basis of lattice-gas or Ising models. Since a 
number of suitable models are complicated and an exact treatment cannot be performed, 
the thermodynamic properties of the phase transitions are investigated by means of 
analytical approximations or numerical simulation. 

Numerical simulation (Monte Carlo method) allows one to obtain values of thermo- 
dynamic properties with high accuracy. However, the Monte Carlo method is computer 
time-consuming and it requires complicated data analysis. Since the model Hamiltonian 
of a complicated system often includes phenomenological parameters, which are not 
initially known, one has to evaluate these parameters by fitting theoretical results to 
experimental data. This procedure demands repeated calculation of thermodynamic 
parameters. Therefore, the above-mentioned shortcomings of numerical simulation 
become rather serious. Applications of the renormalisation-group method to order- 
disorder phase transitions raise the same problems. 

An alternative approach is offered by analytical approximations, based on the 
variational principle of statistical mechanics. These methods are relatively simple though 
they are not as accurate as the numerical ones. The earliest, simplest and most widely 
used are the mean-field approximations. Later, various cluster approximations were 
developed as an extension of the mean-field approximation. 

The choice of analytical approximation depends mainly on the magnitude of short- 
range correlations of spins or ordering particles. The value of f  = exp(/3clJi) - 1 is a 
quantitative characteristic of these correlations. Here pc = l/Tc is the inverse transition 
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temperature and J i s  the coupling constant. Over the rangef 6 1, the mean-field approxi- 
mation is quite acceptable; but, forf > 1, the short-range correlations are usually taken 
into account by means of cluster methods (see e.g. Domb 1960, Ziman 1979). 

Among the available cluster approximations, the cluster-variation method (CVM) 
introduced by Kikuchi (1951) is the most accurate method. This method in the form 
developed by Morita (1957) was applied for the calculation of thermodynamic properties 
of real ordering systems (see e.g. Sanchez et all982). Recently the CVM was used for the 
description of the state diagram of the high-T, superconductor, YBa2Cu307-x (Wille et 
a1 1988). 

The accuracy of the cluster methods depends on the size of the largest (basic) cluster 
involved. However, one cannot initially determine the accuracy of the method with the 
particular basic cluster. Therefore, the cluster approximation with a certain basic cluster 
has to be initially verified on a well investigated model, e.g. the simplest king ferro- 
magnet (Kikuchi 1951, Aggarwal and Tanaka 1977, Sanchez and de Fontaine 1978), and 
then it can be applied to the actual problem. 

It is known that the accuracy of the CVM usually increases on enlarging the basic 
cluster. Consequently, the number of variational parameters also increases and the 
free energy minimisation problem becomes rather complicated. However, large basic 
clusters often are necessary in order to include all interactions in the cluster. In this case 
a simplified cluster approximation-the cluster-field method (cFM)-may be used (Vaks 
etal1988). The CFM allows one to reduce the number of variational parameters compared 
with the CVM. The accuracy of the CFM is lower than that of the CVM. Nevertheless the 
CFM and its analogues were used for the calculations of thermodynamic properties and 
state diagrams of "type ferroelectrics (Blinc and Svetina 1966), ices (Schneider and 
Tornau 1985), solid orthohydrogen (Lee and Raich 1972), ammonium halogenides 
(Vaks and Schneider 1976) and squaric acid (C4H204) (Matsushita and Matsubara 1982). 

In this paper a modified cluster-field method (MCFM) is presented. The MCFM is a 
further development of the CFM, though it can be considered as a version of the CVM. 
The method offers a simplification of calculations compared with the CVM without a loss 
of accuracy. 

In § 2 the basic principles of the MCFM are formulated. In § 3 the application of the 
MCFM to the two-dimensional Ising ferromagnet is demonstrated. In § 4 the comparison 
of the MCFM with the CVM and the CFM is given. Finally, 3 5 is devoted to the description 
of the MCFM properties in the case of large basic clusters. 

2. Calculation of thermodynamic parameters 

We shall describe the MCFM for the Ising model, when the state of the lattice site is 
characterised by the spin U = ? 1 and the Hamiltonian of the system is 

H = -& JUU~U~ - h 2 ~i (1) 
i.j i 

where J, is the pair coupling constant between sites i andj,  and h is an external magnetic 
field. Then the equilibrium density matrix according to the canonical distribution is 
described by 

(2) p = eP(F-H) 

where F is the free energy of the system, which has the form 
F =  -TlnSpe-PH (3) 

and is obtained from normalisation condition Sp p = 1. Sp means summation over all 
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configurations of the system. Since the number of sites N +  CQ, the summation in (3) 
cannot be carried out directly, except in some special cases. Therefore, the equilibrium 
free energy can be obtained using approximate methods. A lot of them are based on the 
exact variational principle of statistical mechanics in which the equilibrium free energy 
is the minimum of the functional 

F =  S p p t ( H +  T l n p , )  (4) 

with respect to a trial N-site density matrix under the normalisation constraint 

S p p ,  = 1. (5) 

In (4) and ( 5 ) ,  pt must be expressed in terms of variational parameters. Then (4) must 
be minimised with respect to those parameters. However, the number of variational 
parameters is 2N - 1 in the general case, so it is too large for practical use, though it can 
be reduced according to symmetry considerations. The approximation consists of two 
stages: 

(i) The N-site density matrix pt is replaced in (4) and (5) by reduced trial density 

(ii) The minimisation of (4) is carried out after p,(K) is expressed in terms of a limited 
matrices p,(K),  where K denotes a set of lattice sites (cluster). 

number of variational parameters. 

The first problem can be solved by the cluster-cumulant expansion of the free energy 
functional (4) (Morita 1957, Kubo 1962), and the second problem deals with the structure 
of the reduced trial density matrix. 

2.1, The cluster-cumulant expansion 

We shall denote a cluster consisting of sites (il, i2, . . . , il) by L.  Here 1 is the number of 
sites in the cluster L.  When all sites of the cluster L are also sites of another cluster K 
with k > I, L is called the subcluster of K ( L  E K) .  

The functional (4) can be expressed as the cluster-cumulant expansion 
. F = 2 p(L)  = 2 Sp p t [ f i ( L )  + TITpp,(L)] 

L L 

where the sum runs over all clusters of the whole N-site lattice { N } .  The cumulants f i ( L )  
and l G , ( L )  are determined by the equations 

for every cluster K ,  and the summation is carried out over all subclusters of K including 
L = K. The reduced density matrices are defined as 

Pt(K) = (9) 

where SpieK means summation over configurations of all sites except those included in 
cluster K .  Owing to the symmetry of the lattice many of the clusters included in (6) are 
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equivalent. Therefore, expression (6) can be replaced by the expansion over non- 
equivalent clusters only, 

where aL  is the number of equivalent clusters L per spin ( L  in this case denotes the type 
of equivalent cluster). In the same way equations (7) and (8) can be expressed as 

with bL denoting the number of equivalent L clusters in cluster K .  
If only pair interactions are included in the Hamiltonian ( l ) ,  the cumulants f i ( L )  

equal zero for the clusters L consisting of more than two sites. 
In the approximation, expression (10) is truncated assuming l G t ( L )  to be zero for 

the cluster L larger than a certain cluster (basic cluster). This assumption is based on the 
fact that the cumulants lTp,(L) are exactly equal to zero if L contains statistically 
independent parts (Kubo 1962). In sufficiently large clusters, the most remote sites 
correlate weakly (at least not in the vicinity of the critical point). Hence l G , ( L )  must 
be rather small. In the case of non-interacting sites l G t ( L )  are not equal to zero only 
for single-site clusters. Then according to (8) the N-site density matrix has the form 

The basic cluster B is usually chosen large enough to contain all the non-zero 
cumulants f i (L) .  Then the expansion of H in (10) is not truncated. 

Taking (9) into account, the functional (10) can be rewritten as 

The equations (11) and (12) for the basic cluster and all its subclusters represent systems 
of linear equations from which fi and l c p  can be expressed in terms of H and In p. 
Replacing the cumulants in (14) by the expressions obtained from these systems, we 
arrive at the functional 

FIN = (1” SP Pt (B)H + T 2 A, SP P t V )  In Pt  (L) (15) 
L E E  

where AK are integer coefficients. Some of the AK may be equal to zero, i.e. not all 
subclusters of the basic cluster must contribute to (15). Reduced trial density matrices 
p,(L) of all clusters involved in (15) are parametrised and the functional (15) is minimised 
under the normalisation constraints (5) and the self-consistency constraints 

following from the definition of the reduced density matrix (9). 
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2.2. Structure of the reduced trial density matrix 

In the MCFM the reduced trial density matrix p,(L)  has the form 

(17) 

FK = -TlnSpe-PHK. (18) 

p,(K)  = e P ( F K - H K )  

where FK is the cluster free energy, obtained from the normalisation condition for (17): 

Here H K  is the cluster Hamiltonian, which is assumed to be of the form 

where the effective fields p and the effective coupling parameters I# are introduced in 
order to ensure the self-consistency conditions (16). According to these conditions, the 
moments (a,a,)Ketcshould be equal averaged with the density matrix of any cluster 
K containing corresponding sites (i), pairs ( i j ) ,  etc. Here (. . denotes averaging with 
density matrix p(K).  It should be noted that parameters I# are introduced only for the 
spin products olioL2.  . .U,, of such subclusters L ,  which are contained in at least two 
clusters involved in the approximation, since only in this case can the self-consistency 
conditions be formulated. However, application of the MCFM to concrete models has 
shown that it is sufficient to introduce q s  for spin pairs only, if only pair interactions are 
included in the Hamiltonian (1). Though in this case the self-consistency conditions are 
not always fulfilled completely, it has little influence on the accuracy of the MCFM (a 
small fraction of a per cent). Inserting the expression for the reduced trial density matrix 
(17) together with (19) into the functional (E), the following expression is obtained: 

Note that according to (1) and (19) the average energies ( H )  and ( H K )  are expressed as 
linear combinations of the moments (a,), (ap,), etc. Differentiating (20) with respect to 
parameters p and I#, equating derivatives to zero and taking into account the self- 
consistency conditions (16), the stationarity conditions for the functional (20) are 
obtained. They can be conveniently written as 

where it is assumed that equation (21) is valid for every moment (ai), (aiai), etc., 
independently. Then equation (21) represents the system of equations of the type 

etc. Equations (22) together with the self-consistency condition (16) give a complete set 
of equations from which to obtain equilibrium values of the variational parameters p 
and q, and, consequently, the equilibrium density matrix p(B). In practice, the linear 
relations (22) allow one to reduce the number of linearly independent variational 
parameters and then to solve the self-consistency equations with respect to those par- 
ameters. According to (20) and (21) the equilibrium free energy has the form 
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1 1 2 

J 
6 4 3 

Figure 1. Square Ising lattice with nearest-neigh- 
bour coupling constantJ and enumeration of spins 
used in this paper. 

,&E 5 9 

Table 1. The cumulants Ffor simplest clusters 

Cluster Cumulant 

3. Application to the square king lattice 

Let us illustrate the MCFM on the square Ising ferromagnet (the enumeration of sites is 
given in figure l ) ,  since the critical temperature of this model is exactly known. 

The cluster-cumulant expansion for the free energy per spin of the square lattice is 

F = F ,  + 2F2 + 2Fi + 4F3 + F4 + F5 + . . . (24) 
the Fs corresponding to the clusters listed in table 1. The cumulant Fi corresponds to 
the pair of non-interacting (diagonal) spins. In F5, several cumulants are included 
for simplicity. The coefficients of the FK terms in (24) are equal to the number of 
corresponding clusters per spin and are obtained from geometrical considerations. The 
expressions of the Fs in terms of the Fs are also listed in table 1. In the approximation, 
expression (24)  is truncated and the cumulants Pare  substituted by Fs according to table 
1. Several expressions of F for various basic clusters are as follows: 

( 2  + 1)-clusters (pair) F =  2Fz- 3Fi (25)  

( 4  + 2 + 1)-clusters (square) (27)  
(5  + 4 + 3 + 2)-clusters (28)  

(3  + 2 + 1)-clusters (triangle) F = 4F3 - 6F2 - 2F; + 5Fi (26)  
F = F4 - 2Fz + FI 

F = F5 + F4 - 4F3 + 2FZ. 

Note that in the last approximation two basic clusters-5-cluster and 4-cluster-are 
involved, since no one of these clusters is the subcluster of another. 



ModiJied cluster-field method 1759 

Table 2. The transition temperatures t, = TC/zJ and entropies S, of the Ising model in various 
approximations. 

Square lattice, z = 4 Simple cubic lattice, z = 6 
Approximation 4 S, t c  s, 

Mean-field (Weiss) 1 0.693 1 0.693 

Cluster-field 
(2 + 1) clusters 0.721 
(4 + 1) clusters 0.693 
(4 + 2) clusters 0.676 

(9 + 4) clusters 0.654 
(4 + 2 + 1) clusters 0.656 
(8 + 4 + 2 + 1) clusters - 
(9 + 6 + 4) clusters 0.624 

(8 + 4) clusters - 

0.580 0.822 
0.552 0.815 
0.534 0.811 
- 0.797 
0.500 - 
0.513 0.794 
- 0.784 
0.442 - 

0.633 
0.628 
0.625 
0.614 

0.613 
0.604 

- 

Modified cluster-field 
(4 + 2 + 1) clusters 0.606 0.428 0.768 0.587 
(5 + 4 + 3 + 2) clusters 0.596 0.405 
(8 + 4 + 2 + 1) clusters - - 0.7631 0.580 

- - 

(9 + 6 + 4) clusters 0.5856 0.3774 - - 

Exact 0.567 0.306 0.752 0.541 

We shall describe explicitly the square approximation. Three clusters make con- 
tributions to the free energy expression (27). Therefore the reduced trial density matrices 
have to be introduced for the square (4-cluster), the pair (2-cluster) and the single spin 
(1-cluster). The cluster Hamiltonians are 

4 

H4 = -(I+ q4>(0102 + 0 2 0 3  f 0 3 0 4  + 0104) - q 4  (29) 

H2 = - ( J  + v 2 ) 0 1 0 2  - Q12(0l + 0 2 )  (30) 

H I =  - q 1 0 1 .  (31) 

0i 
i = l  

In order to calculate the five unknown parameters cp,, q 2 ,  q 4 ,  q2 and q4, the self- 
consistency conditions are to be solved. They correspond to equalities between average 
spins (cT,) and nearest-neighbour pair correlation functions (oiaj) calculated with the 
density matrices pK = e B ( F K - H K )  of various clusters: 

Another two equations follow from the condition (21), which has the form 

(H) /N  = (H4) - 2W2) + Wl). (33) 
For the square Ising lattice in zero magnetic field (H) /N  = -2J(ala2). From (33) we 
obtain 
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Relations (34) allow one to reduce the number of linearly independent variational 
parameters to three. These parameters are obtained from (32). In the paramagnetic 
(disordered) phase (a,) = 0, and hence q 4  = q2 = q l  = 0. Then (32a) turns out to be an 
identity and from (326) we obtain 

(35)  

where K = epJ and q4 = q2/2 according to (346). The critical temperature T,is obtained 
from the condition (d2F/a(a)2) = 0, which is identical to 

( 4 a q 4 / W  - 4aqz /aW + wl/~(u))(o)=o = 0. (36) 
The derivatives of (36) can be obtained by differentiating the expressions (a) = 

Sp alp, with K = 1 ,2 ,4 .  Then the equation for the critical temperature has the form 

2K: - 5Kz + 1 = O  (37) 
where K ,  = eJ/Tc. The solution of (37) gives the following value for the transition 
temperature 

1 
= 0.6064. TC 

4J - 2 ln[(5 + v l7 ) /4 ]  
_ -  

The transition entropy per spin is obtained from (27) according to the thermodynamic 
relation F = E - TS and is equal to 

S, = - ~ P , J ( O I U ~ ) T = ~ - ~  - P,(F4 - 2F2 + FI)T= T ,  = 0.4283. (39) 
We have made analogous MCFM calculations in the (5  + 4 + 3 + 2)-cluster approxi- 

mation for the square Ising lattice and in the (4 + 2 + 1) and (8 + 4 + 2 + 1) approxi- 
mations for the simple cubic lattice ( z  = 6) with cube as the %cluster. The results are 
listed in table 2. 

4. Comparison with other cluster approximations 

The CVM uses the same scheme of cluster-cumulant expansion, but has a different 
structure of reduced trial density matrices. In the most widely used version of the CVM 
(Aggarwal and Tanaka 1977, Sanchez and de Fontaine 1978) the reduced trial density 
matrices are expressed via various moments (aj) ,  (a,a,), etc., in order for the nor- 
malisation and self-consistency conditions to be automatically fulfilled. Therefore, when 
the reduced trial density matrices are substituted in the free energy functional, it is then 
minimised with respect to those moments. In this way, average spins and various 
correlation functions are obtained directly. However, there are more variational par- 
ameters in the CVM than in the MCFM, at least for the Ising ferromagnet. For example, 
to describe the ferromagnetic phase of the square Ising lattice in the square approxi- 
mation five linearly independent parameters should be introduced in the CVM and 
only three in the MCFM. In the cubic approximation of the simple cubic lattice the 
correspondidg numbers are respectively 21 and six. Nevertheless, the MCFM has the same 
accuracy as the CVM. In the square approximations both methods give identical critical 
temperatures; in the cubic approximation Tc of the MCFM is lower by 0.05% than that of 
the CVM. Besides that, at low temperatures the problem of the free energy minimisation 
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in the CVM appears to be more complicated than the solution of the self-consistency 
equations in the MCFM. 

Recently, a method was proposed to reduce the number of variational parameters 
of the CVM (Schlijper and Westerhof 1987). In this method the reduced trial density 
matrix of the largest cluster is expressed approximately in terms of the reduced density 
matrices of smaller clusters. Since the density matrices of smaller clusters have fewer 
parameters, the variational basis of the free energy is reduced and the minimisation 
procedure is simplified. However, the accuracy of this method is lower compared to the 
original CVM. 

The CFM (see e.g. Vaks and Zinenko 1986) is an extension of the constant-coupling 
method (Kasteleijn and van Kranendonk 1956) to the arbitrary size of the basic cluster. 
The structure of the reduced density matrices in the CFM is the same as in the MCFM. 
However, only effective fields q are introduced in the CFM cluster Hamiltonians. These 
fields are assumed to be proportional to the number of bonds connecting the cluster spin 
with its neighbours outside the cluster. The values of effective fields are obtained by 
equating the average spins (a) calculated with density matrices of all clusters of the 
approximation. They can be obtained also from the free energy minimum condition. 
Usually two clusters are involved in the CFM. Then the free energy F is not written in 
accordance with the cluster-cumulant expansion, but from the requirement of the proper 
number of sites and pairs of interacting spins to be included in the free energy. If more 
than two clusters are involved in the CFM, the self-consistency condition and the free 
energy minimum condition may not be equivalent, making the CFM ambiguous. The 
accuracy of the CFM is much lower than that of the CVM or MCFM. Some results of T, 
calculations for the Ising model in the CFM are listed in table 2 as ‘(m + n)  clusters’. 
Besides we applied the cluster-cumulant expansion to the CFM formally taking the 
effective coupling parameters q of the MCFM to be equal to zero. As can be seen from 
table 2 (the last three approximations of the CFM) this procedure, though inconsistent, 
offers a considerable improvement over the CFM with the same basic cluster. Note that 
for ‘pair’ as a basic cluster ((2 + 1)-cluster approximation) all the methods-the CVM, 
CFM and MCFM-give the same result identical to that of the Bethe approximation. 

5. Large clusters in the modified cluster-field method 

The MCFM shows a peculiarity when clusters with the dimensions of several lattice periods 
are used. Let us examine the approximation with a nine-site basic cluster. The free 
energy is described as 

FIN = Fg - 2F6 + F4 

where the 9-cluster consists of four squares (sites 1-9 in figure l ) ,  the 6-cluster of two 
squares (sites 1, 2, 3, 4, 6, 7) and the 4-cluster of one square (sites 1-4). In the four 
nearest coordination spheres the main cluster has seven types of non-equivalent spin 
pairs for which the self-consistency conditions can be written. The seven parameters q 
should be introduced. The 6-cluster has six parameters and the 4-cluster has two. The 
critical temperature and entropy in this approximation are given in table 2. In table 3, 
the q s  are listed together with the corresponding spin pairs and the values of qi/Tc.  One 
can see that the values of q of the edge spin pairs (i.e. VI ,  q5,  q9, ql0, VIZ,  q14) are 
considerably higher than those of the inner spin pairs. This is obviously due to a decrease 
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Table 3. The effective coupling parameters in (9 + 6 + 4)-clusters approximation at the 
transition temperature. 

Parameter Spin pairs 
Coordination 
sphere YJTc Y i l Y m a x  

9-cluster y l  

Y2 
Y3 
Y4 

Y5 

11'1 

11'6 

6-cluster y 8  
YY 
Yto 
11'11 

Yl2 

4-cluster Y ) , ~  

Y E  

VI3 

0.0951 

0.00263 
0.0119 
0.0742 
0.00227 

-0.00124 

0.00930 

0.00214 
0.130 
0.0956 
0.0177 
0.0753 
0.0186 

0.133 (max) 
0.0417 

0.713 

0.0197 
0.0890 
0.556 
0.0170 

-0.00928 

0.0698 

0.0161 
0.974 
0.717 
0.132 
0.565 
0.139 

1 
0.313 

in the influence of the cluster edge on the inner correlations as the cluster size increases. 
Indeed, in the limit of an infinite cluster the density matrix becomes exact without any 
effective pa.rameters. 

Since in the (9 + 6 + 4)-cluster approximation, only several nearest- and third- 
neighbour spin pairs are edge spin pairs, one might suspect that omission of the second- 
and fourth-neighbour q s  would not strongly decrease the accuracy but at the same time 
would considerably simplify the solution. Actually, in the latter case the results are even 
somewhat better: TC/4J = 0.5853, S, = 0.3770. We hope that this assumption is valid for 
other applications of the MCFM. 

6. Conclusions 

The modified cluster-field method proposed in this paper is an analytical approximation 
for the order-disorder problem. The method was developed as an improvement of the 
cluster-field method. We suppose the MCFM to be simpler and easier to use than the CVM. 
The MCFM allows one to use larger basic clusters, so as to achieve a better accuracy and 
to carry out calculations at lower temperatures. The MCFM is useful for the calculation 
of properties of physically adequate and thus complicated models (Ising or lattice gas) 
with a large number of coupling constants, especially when repeated calculations are 
needed. The method is a compromise between simple and non-accurate mean-field 
approximations and precise but complicated and time-consuming Monte Carlo or renor- 
malisation-group methods. Though the MCFM, as a classical theory, gives classical critical 
indices, the accuracy of T, determination is rather good-3-7% for the two-dimensional 
and about 2% for the three-dimensional lattices. 
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In the present paper in order to evaluate the accuracy of the MCFM we have applied 
the method to the well known and exactly solvable Ising model with nearest-neighbour 
coupling (the Ising model, as a rule, is used for the demonstration and comparison of 
various approximations). In practice, various analytical methods are valuable only for 
the investigation of more complicated models, which (for certain reasons) cannot be 
investigated with more precise methods. 
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